Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Medicine in Drug Discovery ; 17, 2023.
Article in English | Scopus | ID: covidwho-2242370

ABSTRACT

Significant progress in understanding cancer pathogenesis, it remains one of the leading causes of death after cardiovascular diseases. Similarly viral infections have emerged from wildlife or re-emerged, generating serious threats to the global health. As a result, there is an urgent need for the development of novel, more effective anticancer and antiviral therapeutics. Scientists, medicinal chemists and researchers are continuously finding novel targets, mechanisms and molecules against theses severe and dangerous infections. Therefore, ongoing extensively study and research emphasizes 1,3,4 thiadiazole pharmacophore have versatile pharmacological actions. Due to mesoionic behaviour of 1,3,4 thiadiazole pharmacophore allows to enter and easily cross biological membrane which allow to interact various biological proteins. In this review study an attempt has been made of various mechanisms involved in cancer and viral prevalence with updated studies done so far. This review study also findings the role of 1,3,4 thiadiazole motif in the management of various cancers and viral infection. This study also highlighting research statics on clinical trials and various patents containing 1,3,4 thiadiazole derivatives. © 2022 The Author(s)

2.
Adv Redox Res ; : 100064, 2023 Jan 26.
Article in English | MEDLINE | ID: covidwho-2209810

ABSTRACT

Currently, nitrogen-containing heterocyclic virucides take the lead as top options for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their escorting disease, the coronavirus disease 2019 (COVID-19). But unfortunately, the sudden emergence of a new strain of SARS-CoV-2, the Omicron variant and its lineages, complicated matters in the incessant COVID-19 battle. Goaling the two paramount coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) at synchronous times using single ligand is a quite effective new binary avenue to restrain SARS-CoV-2 reproduction and cease COVID-19 progression irrespective of the SARS-CoV-2 strain type, as RdRps and ExoNs are vastly conserved in all SARS-CoV-2 strains. The presented in-silico/in-vitro research winnowed our own small libraries of antioxidant nitrogenous heterocyclic compounds, inspecting for the utmost convenient drug candidates expectedly capable of effectively working through this dual tactic. Computational screening afforded three promising compounds of the antioxidant 1,3,4-thiadiazole class, which were named ChloViD2022, Taroxaz-26, and CoViTris2022. Subsequent biological examination, employing the in-vitro anti-RdRp/anti-ExoN and anti-SARS-CoV-2 assays, exclusively demonstrated that ChloViD2022, CoViTris2022, and Taroxaz-26 could efficiently block the replication of the new lineages of SARS-CoV-2 with considerably minute anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.18 and 0.44 µM for ChloViD2022, 0.22 and 0.72 µM for CoViTris2022, and 0.25 and 0.78 µM for Taroxaz-26, in the order, overtaking the standard anti-SARS-CoV-2 drug molnupiravir. These biochemical findings were optimally presupported by the results of the prior in-silico screening, suggesting that the three compounds might potently hit the catalytic active sites of the virus's RdRp and ExoN enzymes. Furthermore, the perfect pharmacophoric features of ChloViD2022, Taroxaz-26, and CoViTris2022 molecules make them typical dual inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures eligible for diverse forms of chemical modification. In sum, the current important results of this thorough research work exposed the interesting repurposing potential of the three 2-amino-1,3,4-thiadiazole ligands, ChloViD2022, Taroxaz-26, and CoViTris2022, to effectively conflict with the vital biointeractions between the coronavirus's polymerase/exoribonuclease and the four essential RNA nucleotides, and, accordingly, arrest COVID-19 disease, persuading the relevant investigators to quickly begin the three agents' comprehensive preclinical and clinical anti-COVID-19 assessments.

3.
Mol Biotechnol ; 2023 Jan 24.
Article in English | MEDLINE | ID: covidwho-2209534

ABSTRACT

Recently, natural and synthetic nitrogenous heterocyclic antivirals topped the scene as first choices for the treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their accompanying disease, the coronavirus disease 2019 (COVID-19). Meanwhile, the mysterious evolution of a new strain of SARS-CoV-2, the Omicron variant and its sublineages, caused a new defiance in the continual COVID-19 battle. Hitting the two principal coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) synchronously using the same ligand is a highly effective novel dual pathway to hinder SARS-CoV-2 reproduction and stop COVID-19 progression irrespective of the SARS-CoV-2 variant type since RdRps and ExoNs are widely conserved among all SARS-CoV-2 strains. Herein, the present computational/biological study screened our previous small libraries of nitrogenous heterocyclic compounds, searching for the most ideal drug candidates predictably able to efficiently act through this double approach. Theoretical filtration gave rise to three promising antioxidant nitrogenous heterocyclic compounds of the 1,3,4-thiadiazole type, which are CoViTris2022, Taroxaz-26, and ChloViD2022. Further experimental evaluation proved for the first time, utilizing the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that ChloViD2022, CoViTris2022, and Taroxaz-26 could effectively inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 0.17 and 0.41 µM for ChloViD2022, 0.21 and 0.69 µM for CoViTris2022, and 0.23 and 0.73 µM for Taroxaz-26, respectively, transcending the anti-COVID-19 drug molnupiravir. The preliminary in silico outcomes greatly supported these biochemical results, proposing that the three molecules potently strike the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's vital active sites. Moreover, the idealistic pharmacophoric hallmarks of CoViTris2022, Taroxaz-26, and ChloViD2022 molecules relatively make them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their highly flexible structures open for various kinds of chemical derivatization. To cut it short, the present pivotal findings of this comprehensive work disclosed the promising repositioning potentials of the three 2-aminothiadiazoles, CoViTris2022, Taroxaz-26, and ChloViD2022, to successfully interfere with the crucial biological interactions of the coronaviral-2 polymerase/exoribonuclease with the four principal RNA nucleotides, and, as a result, cure COVID-19 infection, encouraging us to rapidly start the three drugs' broad preclinical/clinical anti-COVID-19 evaluations. Dual SARS-CoV-2 polymerase (RdRp) and exoribonuclease (ExoN) inhibition via nucleoside mimicry is a very effective novel approach for COVID-19 infection therapy. Hydroxylated nitrogenous heterocyclic compounds are currently considered first choices in COVID-19 therapy. Extensive computational investigations disclosed three synthetic 5-substituted-2-amino-1,3,4-thiadiazoles, CoViTris2022, Taroxaz-26, and ChloViD2022, with ideal anti-RdRp/ExoN features. ChloViD2022 was ranked the top among the three NAs, with biochemical anti-RdRp EC50 value of 0.17 µM. ChloViD2022 accordingly displayed excellent anti-SARS-CoV-2 EC50 value of 0.41 µM against the Omicron variant.

4.
J Mol Struct ; 1268: 133659, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1914831

ABSTRACT

1,3,4-Thiadiazole analogues 3 and 4 were synthesised via the reaction of 1-(5-methyl-1-(5-(methylthio)-1,3,4-thiadiazol-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1one 2 with vanillin or thiophene-2-carboxaldhyde, respectively through chalcone reaction. Compounds 3 and 4 were submitted to react with thiosemicarbazide affording 5-(4­hydroxy-3-methoxyphenyl)-3-(5-methyl-1-(5-(methylthio)-1,3,4-thiadiazol-2-yl)-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (5) give 3-(5-methyl-1-(5-(methylthio)-1,3,4-thiadiazol-2-yl)-1H-1,2,3-triazol-4-yl)-5-(thiophen-2-yl)-4,5 dihydro-1H-pyrazole-1-carbothioamide (6), respectively. The letters were reacted with N-(4-chlorophenyl)-2-oxopropanehydrazonoyl chloride to give compounds 7 and 8. The chemical compositions of the novel compounds were affirmed by spectral and microanalytical data. Meanwhile, all the newly synthesized compounds have been screened for their ability to prevent the proliferation of different pathogens named Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Candida albicans in vitro. Additionally, the potency of the newly synthesized compounds to be anti-COVID-19 candidates was studied through a molecular docking study. The newly prepared molecules 2-8 were studied in silico against transmembrane serine protease 2 (TMPRSS2) to identify their potential therapeutic activity against Coronavirus. Moreover, the drug-likeness of the compounds was tested theoretically by ADMET studies. Compound 8 exhibited a better binding affinity (-9.1 kcal/mol) against the target enzyme TMPRSS2. Additionally, it respects Lipinski's rule of five and has acceptable ADMET properties, indicating that compound 8 could be interesting for the treatment of Covid-19.

5.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1847379

ABSTRACT

The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure-activity relationship.


Subject(s)
Thiadiazoles , Drug Design , Oxadiazoles/pharmacology , Structure-Activity Relationship , Thiadiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL